Some Common Pilot Rule of Thumbs

```
Time/ Distance/ fuel - Time, distance and ground speed formula
    To find distance D =GS X T
        example GS = 90 T = 30 minutes (.5 hrs) D = 90 X .5 = 45nm
    To find time T = D/R
    example D = 30nm GS = 100kts T= 30/100 T = . 3 hrs X 6 min = 18 minutes (. 1 hour = 6 minutes)
    To find ground speed GS= D/T
    example D=50nm T=25minutes GS =50/25 = 2nm per minute
    2nm}\times60minutes=120 nm per hou
    To determine fuel burn (gallons per hour)
    Gallons per hour (GPH) = Gallons used / hours flown
    example- duration of flight }2\mathrm{ hours, gallons used }18\mathrm{ gallons
    18/2 = 9 gallons per hour
```

 To determine fuel required
 Fuel required = Time enroute \(X\) fuel burn
 example- time enroute - 2 hours fuel burn 8 gallons per hour
 \(8 \times 2=16\) gallons required (then add on reserve requirements!)

Rule of thumb:

Fixed pitch non turbo aircraft climb performance decreases 8% for each 1000 ft of density altitude above sea level. (7% for variable pitch non turbo aircraft)
example -Sea level climb $=700 \mathrm{ft}$ per minute Density altitude $=5000 \mathrm{ft}$
8% X $5=40 \%$ decrease
$.40 \times 700-280$ foot per minute
$700-280=420$ foot per minute climb rate (obstacles around runway! weight and balance!)

To reduce affects of a headwind climb, climb at cruise climb speed
To take advantage of tailwind climb at Vy (best rate of climb)
Takeoff performance ; A headwind of 10% takeoff speed will reduce ground roll by 20\%. A tailwind of 10% of takeoff speed will increase takeoff roll by 20%.

A 10\% change in aircraft weight will result in a 20% change in takeoff distance. (high density altitude!)
Abort the takeoff if 70% of takeoff speed by 50% of available runway.
A soft field or deep grass can increase takeoff distance by 50%. Wet snow or slush can double takeoff distance or impossible.

Available horsepower decreases 3% for each 1000ft of altitude above sea level.
example- Altitude $=5000 \mathrm{ft} \mathrm{msl}$ Sea level horsepower $=100 \%$
5(thousand) X $8 \%=15 \%=$ available horsepower $=85 \%$ (consider when at high altitude airports, or flying around mountains)

A slippery or wet runway may increase your landing distance by 50\%

A 10% change in airspeed will cause a 20% change in stopping distance. (this will affect your float time in the flare mode)

Plan to touch down in first third of the runway or go around.

For every knot of airspeed above Vref (the approach speed used till flare) will result in the touchdown point 100 feet further down the runway. (airspeed control is critical in aircraft control which is a sign of a responsible pilot)

